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ABSTRACT
We present a formal framework of an autonomous agent as
a collection of coordinated control loops, with a recurring
sense, plan, act cycle. Our framework manages the informa-
tion flow within the partitioned structure to ensure consis-
tency in order to direct the flow of goals and observations in
a timely manner. The resulting control structure improves
scalability since many details of each controller can be encap-
sulated within a single control loop. This partitioned agent
design promises a domain-independent, scalable and robust
approach for control of real-world autonomous robots oper-
ating in dynamic environments. We validate our framework
with experimental results from deployments in two different
real-world domains.

Categories and Subject Descriptors
I.2.9 [Autonomous vehicles]:

General Terms
Design

Keywords
Robot Planning, Cognitive robotics, Reactive vs deliberative
approaches

1. INTRODUCTION
Autonomous robotic explorers must be proactive in the

pursuit of goals and reactive to evolving environmental con-
ditions. These concerns must be balanced over short and
long term horizons to consider timeliness, safety and effi-
ciency, presenting a substantial challenge for control system
design.

As an illustrative example, consider an analogy in human
control of a Remotely Operated Vehicle (ROV) for under-
water exploration [4] to identify, sample and track a feature
of interest such as an algal bloom. Typically the ROV is
deployed from a ship with the following personnel acting
specific roles as shown in Fig. 1:
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• The Scientist has the overall knowledge of the science
needs and drives the mission plan via high level direc-
tives such as where to go and what tools and sensors
to use.

• The Pilot follows instructions while respecting opera-
tional constraints and tries to command the vehicle for
a successful mission completion.

• The Arm operator is looking for items of scientific in-
terest to collect and deposit in a sample tray taking
commands from the Scientist or Pilot.

• Finally the ROV itself receives and executes the com-
mands received (overall control from the Pilot and
arm actuation from the Arm Operator) providing force
feed-back or moving through the water column.

Often the scientist specifies the survey objectives in an
abstract manner such as:

Explore the box defined by the points NE, SE, NW,
SW looking for a bloom feature with a minimum
sampling resolution of 1km and maximum resolution
of 250m between survey transects. Take up to 8 wa-
ter samples within the feature preferably with a sep-
aration of 1km from each other.

Even though it may ap-

Vehicle

Arm operatorPilot

Scientist

Figure 1: A conceptual view

of actors in ROV operations.

pear at first as provid-
ing substantial informa-
tion, this objective is ab-
stract; the vehicle needs
to obtain sensor data to
identify the bloom and
to find the sequence of
commands to send for ef-
ficient exploration of the
defined area. Finding an
episodic phenomenon such
as a bloom in of itself

has substantial uncertainty; doing so within the context
of a mission that can include pursuing opportunistic goals
while reacting to unexpected events that may threaten ve-
hicle safety, is challenging.

Each actor has a different functional role over differing
temporal scopes during the mission even as their shared
knowledge is well defined. They are also, for the most part,
entities with some deliberation and reaction capabilities. For
instance, while the Pilot may need to react immediately to
a potential navigation problem, the Scientist may need time
to deliberate in order to alter mission objectives in the light
of new information. In effect these actors represent individ-
ual sense-plan-act loops with their own foci and view of the
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world, while interacting with each other in order to complete
a mission.

We use this paradigm to motivate our agent design in
an exploration context which can also be found in military,
aviation and spaceflight operation domains. Such a com-
mand and control process suggests that responsibilities can
be partitioned to exploit differing task definitions, abilities
and functional and temporal scope for autonomous agent
control.

We therefore, formally define an agent control structure as
a composition of coordinated control loops with a recurring
sense-plan-act (SPA) cycle. We manage the information flow
within the partitioned structure to ensure consistency in or-
der to direct the flow of goals and observations in a timely
manner. The resulting control structure improves scalabil-
ity since many details of each controller can be encapsulated
within a single control loop. Furthermore, partitioning in-
creases robustness since controller failure can be localized to
enable graceful system degradation, making this an effective
divide-and-conquer approach to the overall control problem.
The role of our agent is to ensure that all the reactors will
be able to interact concurrently so that they:

• are informed of state evolution that may impact them

• have a sufficient amount of time to synthesize plans

• coordinate plan dispatch across reactor boundaries

The dominant approaches for building situated robotic
agent control systems, utilize a three-layered architecture
[9], notable examples of which include IPEM [3], ROGUE
[10], the LAAS Architecture [1], the Remote Agent Exper-
iment [19] and ASE [6] (see [12] for a survey). Scalability
is of concern since the planning cycle in these approaches
is monolithic often making fast reaction times impractical
when necessary; many of these systems also utilize very dif-
ferent techniques for specifying each layer in the architecture
resulting in duplication of effort and a diffusion of knowledge
([19] and [6] are exemplars). With lessons learned from the
Remote Agent experience, IDEA [7] was designed with inter-
leaved planning and execution with a collection of controllers
within a common framework. However IDEA, did not en-
force a systematic framework for formally governing these
interactions. In our view both the synchronization of state
and dispatching of plan primitives are critical to ensure a
correct behavior of the agent and in our view, fundamental
to making the approach effective in practice. This is the
novelty of our work.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a conceptual view of our framework to set the
context of the analysis that follows in section 3. The latter
is the core of the paper and describes the semantics of infor-
mation exchange and deliberation. Section 4 highlights the
real-world examples in the terrestrial and underwater do-
mains with situated robots. We conclude with future plans
in section 5.

2. A CONCEPTUAL VIEW OF A REACTOR
We conceptualize the reactor as a system that exhibits

it’s own internal state that is dependent on external ob-
servations from other reactors. Such information exchange
occurs by sharing state variables over a common temporal
horizon. A state variable describes the evolution of an at-
tribute of the agent over time. For example, the Position of

a vehicle varies over time and is important in deducing the
vehicle’s state at any instance of time.

Each reactor then
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Figure 2: An agent is composed of

multiple reactors or control loops.

is a collection of such
state variables that
reflect its evolution
in the past and its
desired projection
of the future. In-
formation about al-
lowable state evo-
lution is expressed
within a model which
a reactor consults.
Fig. 2 shows one
such example of an
agent with four re-
actors using our ROV
example. The Sci-
entist ’s temporal scope

is the entire mission and it can take minutes to deliberate.
The Vehicle on the other hand interfaces to the ROV hard-
ware and needs to have minimal latency with no delibera-
tion. The Pilot and Arm Operator have temporal scopes in
between.

In our agent, the Pilot exhibits a state variable expressing
the status of the underwater vehicle with different predicates
such as Communicate, Surfacing, and HeadingTo(x,y) rep-
resentative of system state. These states are constrained by
Vehicle state variables such as its Position and the Command
executed. For example Status can be in the Communicate

state only if the current Command is Idle and the Position
indicates a depth close to the surface (depth ≤ 0.5) as shown
in Fig. 3.

Ascend(2)

depth � 0.5

�t < 5

Command

Position

CommunicateStatus Surfacing

starts

Idle

contained_by

Figure 3: The Pilot’s plan for communication: Status is

internal while Command and Position are external to this

reactor.

The internal state of a reactor is driven in large part by
the external environment. So to identify the real value of its
internal state variable Status, the Pilot needs to know the
current value of the two external state variables provided by
another reactor, Vehicle. In our framework we allow only
the reactor having an internal state variable as having the
capability to model its evolution. It then becomes important
that this state is correctly computed and in turn constrains
other reactors that depend on its value. This operation,
called synchronization, needs to be done as time advances in
order to ensure that all reactors have the same view of state
variables of the agent at least up to the execution frontier.

Conversely, the external world is influenced by partial
plans generated by a reactor. A reactor’s future objectives
impact the evolution of its external state variables. If the
Pilot has the goal to Communicate in the near future and the
current position observed indicates a depth of 10m the Pilot
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Figure 4: Reconciling different views of the Command

state variable by the owner Vehicle.

needs to generate goals to appropriately constrain the Po-
sition and Command state variables. This operation, called
deliberation, is intrinsic to the reactor. Accordingly, the look-
ahead planning window and latency are parameters to help
the agent identify when to prioritize a reactor’s deliberation.

After deliberating the Pilot could produce a partial plan
as shown in Fig. 3. It enters the state Surfacing which in
turn requires the external state variable Command to be in
state Ascend(depth ) with depth ≤ 0.5. Ascend is encapsu-
lated within Vehicle which needs to be informed of these new
objectives tasked by the Pilot. This operation, called dis-
patching, is undertaken to integrate the external state vari-
ables in a reactor’s partial plan as goals for reactors owning
these state variables.

Fig. 4 illustrates what appears to be divergent views of
a single state variable, Command, getting reconciled by the
owner reactor. For example, while the Pilot might plan as
shown in Fig. 3, the Arm Operator might have planned to
achieve the state to SampleWater while the Vehicle reactor
might project the future state to be Idle. These views are
not necessarily incompatible; we may be able to sample after
Idle-ing, for instance. In the event of a conflict, the final
arbitration is left to the reactor owning the state variable.
Reconciliation of such divergent views necessitates the need
for efficient coordination which requires our framework to
enforce:
Synchronized state views: Each reactor needs to share

the same view of the past and the current state of
a state variable. This implies that when the internal
state variables are updated, reactors that observe them
as external state variables, need to be informed of state
change so all reactors have a consistent view of the past
and the present.

Exchange of intentions: A constraint externally applied
on the future evolution of a state variable has to be
integrated as an objective (or goal) to its internal rep-
resentation, necessary for task delegation.

When not reconcilable, conflicting goals are rejected. These
properties need to be maintained during the entire execu-
tion cycle of the agent while allowing reactors to deliberate
within a reasonable time frame. To enforce these properties,
we make two assumptions:

• Uniform tick rate: the world evolution is at a given
frequency. All the state variables maintained inside an
agent evolve at a rate that cannot be higher than this
frequency. We do so to reduce complexity in book-
keeping and to ensure synchronous system state evo-
lution.

• The past is monotonic: Observations produced at a
given time by a reactor are statements of truth and
cannot be changed in the future. This too is enforced
to reduce system complexity.

3. AGENT ARCHITECTURE

3.1 Definitions
Our agent is a collection of reactors evolving as time ad-

vances and defined as the tuple {H,R,S,L, IR, ER, view}
where :

• H = [0, D] ⊆ N defines the interval of time during
which the agent will be active; D represents the life-
time of the agent. In this context we define the follow-
ing:

– τ ∈ H is the execution frontier of the agent de-
picting elapsed execution time.

– A tick is a unit of time and has a fixed duration
of δtick.

• R: A finite set of reactors of the agent. Each reactor
r provides information about:

– its deliberation latency (λr ∈ N) which indicates
the maximum number of ticks it will need to pro-
duce a new plan.

– and its deliberation look-ahead (πr ∈ N) indicat-
ing how far ahead it is deliberating.

• S: The set of state variables in an agent.

• L: The set of all the possible evolutions of the state
variables of S over H. The subset of this domain for a
specific variable s is given as Ls.

• IR : R → 2S A partition of S over R giving the map-
ping between reactors and their internal state vari-
ables. This means that for each state variable s there’s
one and only one reactor that declares it as internal :

S =
⋃

r∈R
Ir (1)

∀(r1, r2) ∈ R×R :

Ir1 ∩ Ir2 
= ∅ ⇒ r1 = r2 (2)

• ER : R → 2S which indicates what external state vari-
ables a reactor r depends on. An external state vari-
able of r cannot be internal to the reactor:

∀r ∈ R : Ir ∩ Er = ∅ (3)

• view : H × S × R → L ∪ {⊥} is a function that gives
the current evolution of a state variable s as viewed by
r at τ , otherwise it is symbolized by the special value
⊥ indicating that r does not interact with s.

∀(r, s) ∈ R× S :

s 
∈ Ir ∪ Er ⇔
(
∀τ ∈ H : viewτ (s, r) = ⊥

)
(4)

s ∈ Ir ∪ Er ⇒
(
∀τ ∈ H : viewτ (s, r) ∈ Ls

)
(5)

3.2 State variable representation
In our framework the view of a state variable evolution in a

reactor is represented by timelines, a flexible representation
to describe one sequence of states for a given state variable
[18, 11, 14].

Definition 1. For each state variable s ∈ S, timeline
values l ∈ Ls of s are defined by the tuple {Ts,Ql,Gl} where:

• Ts is the set of all the possible tokens for s. Each token
T ∈ Ts expresses a constraint on the value of s over a
temporal scope. It is described as the predicate

T = p(start, duration, end,−→x )
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where p is the predicate name; attributes start, duration
and end are intervals over N indicating temporal scope
during which p will hold. −→x describes the attributes
of p with their acceptable domains. For example the
token:

Speed( start = [0, 5], duration = [1, 10], end = [1, 15],
speed = [1, 1.5] )

represents the speed of a vehicle between 1 and 1.5m/s

starting between the tick 0 and 5 for up to 10 ticks.

• Ql = {T1, . . . , Tn} ∈ 2Ts is a sequence of valid tokens
that describe a possible evolution of s. No two tokens
Ti ∈ Ql can be concurrent and they are sorted accord-
ing to their relative temporal order. Formalizing using
Allen algebra [2]:

∀i ∈ [1, n) : Ti meets Ti+1 ∨ Ti before Ti+1 (6)

• Gl ⊆ Ts describes the set of goals for this timeline. A
goal is a token that needs to be evaluated for potential
insertion in Ql or rejected if insertion is not possible
[8]. The result of deliberation is to find a way to make
this goal set empty.

Fig. 3, for example, shows Communicate and Surfacing

tokens on the Status timeline.

3.3 Synchronization: Maintaining Agent state
To ensure that in our lock-step approach to maintaining

the same view of agent state via state variables, we synchro-
nize reactors.

Each reactor has its own view of a state variable. These
views can be divergent and need to be aligned with a com-
mon ground truth at the execution frontier τ . The refer-
ence of this ground truth is the view provided by the reac-
tor declaring this state variable as internal (s ∈ Ir). The
agent’s role is then to ensure that this value can be cor-
rectly computed and distributed to reactors observing this
state variable. The sequencing of this operation is crucial as
an internal state variable depends on the state of the exter-
nal state variable of this reactor. We define this operation
as follows:

Definition 2. For each state variable s ∈ S a view of
l ∈ Ls is synchronized at τ , �(l, τ), when its value up to τ

reflects the evolution of s.
By extension a reactor r is synchronized at τ (�(r, τ)) iff

all its internal state variables views are synchronized:

∀r ∈ R :

�(r, τ) ↔
(
∀s ∈ Ir : �(viewτ (s, r), τ)

)
(7)

To maintain agent state, we ensure that all the reactors
are synchronized each time τ advances. Doing so guarantees
that all reactors have a common view of the world up to the
execution frontier τ . In our framework the internal state
variable values depends on the external state variables. Fig.
5 illustrates this relationship for the Pilot.

For example, in order to identify that it is in the Com-

municate state on its internal Command state variable, the
Pilot needs to be aware that that the Position is close to the
surface and the Command currently executed is Idle. Both
these state variables are owned by the Vehicle. As a result
the Pilot cannot deduce its internal state before having a
correct view of the external state variables it relies on.

Pilot

Vehicle

Scientist

Status

CommandPosition

Position Command

Status

Model

Model

World

internal view

external view

external view

internal view

Figure 5: Relationship between internal and external

views of a state variables. The internal view is deduced

based on the reactor’s model; the external view“observes”

the state variables owned by a different reactor.

Lemma 3.1. At τ for the reactor r, the internal view of a
state variable s ∈ Ir cannot be synchronized before its state
variables in Er are synchronized:

∀r ∈ R, ∀s ∈ Ir :

�(viewτ (s, r), τ) ⇒
(
∀e ∈ Er : �(viewτ (e, r), τ)

)
(8)

Corollary 3.2. A reactor cannot be synchronized before
all its external views of state variables are.

Proof. This follows from the definition of � on Equation
7 and the Lemma 3.1.

Definition 3. The maximum synchronization duration
per reactor r is δr

sync ∈ R.

The synchronization between external and internal state
variables is the responsibility of the reactor. As stated in
Corollary 3.2 this operation can only be done after exter-
nal state variables of r are synchronized. Further, since the
correct state of an external view is produced by its corre-
sponding internal view in a reactor which has ownership, we
show:

Lemma 3.3. At any time τ for reactor r1, an external
view of a state variable s ∈ Er1 is synchronized if and only
if the corresponding internal view on reactor r2, s ∈ Ir2

(r2 
= r1) is synchronized and both views are identical up to
τ .

Such relationships imply a natural dependency chain be-
tween reactors that can be defined as follows:

Definition 4. A reactor r1 depends on another reactor
r2, shown as r1 � r2, iff some subset of its external state
variables are internal to r2. Formally:

∀(r1, r2) ∈ R×R :

r1 � r2 ⇔ Er1 ∩ Ir2 
= ∅ (9)

We can reduce the synchronization problem as follows:

Corollary 3.4. A reactor cannot be synchronized before
all the reactors it depends on are synchronized.

∀(r1, r2) ∈ R×R :

�(r1, τ) ∧ r1 � r2 ⇒ �(r2, τ) (10)

We can then affirm the following:
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Theorem 3.5. To ensure synchronization convergence of
all reactors of the agent, cyclic dependency between reactors
should be prohibited.

Proof. Assume two reactors r1, r2 have a cyclic depen-
dency such that r1 � r2 and r2 � r1. Corollary 3.4 implies
that none of them can be synchronized before the other is.
Consequently the only way to have these two reactors syn-
chronized is to search for a fixed point until both appear to
maintain their state value. A fixed-point iteration in general
is not guaranteed to converge, therefore we cannot guaran-
tee that these reactors will eventually be synchronized to
stabilize overall agent state.

By enforcing no cyclic dependency we can find a linear or-
der between the reactors which ensures that a if r1 �r2 then
r1 won’t be synchronized by the agent until r2 is. Synchro-
nization between reactors then will result in a single pass
iteration through all the reactors which is O(‖R‖) provided
that δr

sync (the maximum synchronization time) ∀r ∈ R are
bounded. As a result the synchronization time complexity
is linear in the number of reactors.

To guarantee that all the reactors are synchronized at each
tick for our agent: ∑

r∈R
δ

r
sync ≤ δtick (11)

Eqn 11 would be sufficient if the reactors did not have to
deliberate and just keep track world evolution. As we expect
them to take time to deliberate this relation is superseded
as: ∑

r∈R
δ

r
sync � δtick (12)

When all reactors respect Eqn 12 the agent has a correct
view of the evolution of the world. This is a necessary basis
for sound deliberation.

3.4 Dispatching: Ensuring common objectives
Reactors dispatch partial plans to task other reactors via

external state variables. This is the primary mode of agent
wide execution between reactors (as also to actuate robotic
hardware). Understanding deliberation is key however, to
knowing when precisely dispatching can occur.

A reactor r deliberates to find a plan that fulfills goals
attached to its internal or external views Gviewτ (r). Delibera-
tion results in the reduction of this goal set to ∅ by attempt-
ing to insert the goal in the plan (or by rejecting it). Even
though a reactor may need more than one tick to produce
its plan, the agent can interrupt this process at any time
without prohibiting the reactor to synchronize its current
state.

Definition 5. We define the expression deliberate : H×
R → {�,⊥} indicative of a reactor’s need to deliberate. This
expression is necessarily true if any of the views of the reac-
tor have a non empty goal set :

∀r ∈ R, ∀τ ∈ H :

deliberateτ (r) ⇐
(
∃s ∈ Ir ∪ Er : Gviewτ (s,r) 
= ∅

)
(13)

As soon as a reactor has an objective attached to at least
one of its internal state variables it needs to deliberate. Us-
ing the definition of the deliberation latency (λr) for reactor
r from section 3.1 the following property must hold for de-
liberation to occur within r:

Proposition 3.6. The maximum duration during which
a reactor r is in deliberation, is its deliberation latency λr.

At the end of deliberation a reactor is expected to have a
partial plan. This plan potentially includes tokens attached
to the evolution of its external state variables. Fig. 3 il-
lustrates how the Communicate token on the Status state
variable, sub-goals to Idle and depth on the Command and
Position external state variables respectively. This view of
the future is pending and needs to be reconciled during syn-
chronization.

Definition 6. For each external state variable s of a re-
actor r, we define the set pendingτ (s, r), defined only when
the reactor is not deliberating, to include all tokens that de-
scribe the desired evolution of these state variables for this
reactor’s plan.

∀(τ, r) ∈ H×R,¬deliberateτ (r), ∀s ∈ Er :

pendingτ (s, r) = {t ∈ Qviewτ (s,r) : t.start > τ} (14)

Indeed, reactor deliberation during and after, can alter this
future. By extension we define the overall agent pendingτ (s)
set as:

pendingτ (s) =
⋃

r∈R
pendingτ (s, r) (15)

The role of the agent then, is to provide an efficient mecha-
nism to transfer these pending tokens as goals for the internal
views of corresponding state variables. If these goals are fea-
sible the reactor will ensure that the corresponding tokens
are now part of the internal view of the future evolution of
the reactor.

Proposition 3.7. The goal set of internal state variables
of a reactor r is a subset of pending tokens of the external
views of these state variables in reactors depending on r.

∀r ∈ R, ∀s ∈ Ir :

Gviewτ (s,r) ⊆ pendingτ (s) (16)

As the reactor (and by extension agent) state is evolving,
and synchronization and deliberation are to occur between
ticks, a key question is, when can a pending token be in-
cluded in a state variable’s goal? Each reactor r, provides
a priori, its maximum deliberation latency λr. In addition
the reactor must also account for sufficient time to ensure
that the external views of its partial plan can be reconciled
into other reactors.

Definition 7. A reactor’s execution latency (Λr) expresses
the time necessary for a reactor to both deliberate and cor-
rectly dispatch the outcomes of its partial plan on its external
state variables. It is recursively defined as:

Λr = λr + max
r′∈R:r�r′(Λr′) (17)

Using the look-ahead πr, we can then identify the plan-
ning window as a temporal duration over which reactor r

deliberates:

Theorem 3.8. When a reactor starts its deliberation at
τ its planning window is specified as:

Πr(τ) = [τ + Λr, τ + Λr + πr] ∩H (18)

Proof. Let r1 � r2. Consider that reactor r1 takes its
full latency λr1 to produce its partial plan. It would then
be able to dispatch its pending tokens only after τ + λr1.
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Now consider that reactor r2 also uses its full latency to
produce a plan for one of these pending tokens tp. The ob-
servation of tp during synchronization of r1 will not occur
before τ + λr1 + Λr2. Consequently to ensure a viable ex-
ecution of the plan resulting from deliberation, reactor r1

should plan on a window starting from τ + Λr1. There-
fore the upper bound of r1’s planning window is given by:
τ + Λr1 + πr1.

Using this information from each reactor, the agent can
now efficiently identify which pending tokens need to be in-
cluded in corresponding internal goal sets. Proposition 3.7
can be refined as:

Proposition 3.9. For each state variable s the pending
tokens that can be considered for deliberation by the own-
ing reactor r (i.e s ∈ Ir) should have been inserted in this
reactor in the past:

∀(r, τ) ∈ R×H, ∀s ∈ Ir, ∀tp ∈ pendingτ (s) : (19)

tp.start ∩ Πr(τ) 
= ∅ ⇒
(
∃t ∈ H, t ≤ τ : tp ∈ Gviewt(r,s)

)

reactor r1

reactor r2

Internal
view

External
view

�

Obs1 Obs2

Obs1 Obs2 pending

O3

O3

�
2 2

[�+1, +�]

[�+1, 100] [95, 100] [96, + �]

Goals

Figure 6: Transfer of a pending token to its correspond-

ing goal set. Reactor r1 has a pending token overlapping

the planning window of r2 to be inserted in its goal set.

In Fig. 6, as soon as a pending token of state variable s

(s ∈ Er1), can start within the planning window of r2 which
owns s, the agent inserts this token in the current goal set
for r2 to deliberate.

pending tokens that necessarily start before τ +Λr cannot
be safely included in reactor r’s goal set, since r may need its
full latency to produce its partial plan and therefore won’t
be in a position to integrate this goal in time. Conversely
pending tokens starting necessarily after τ +Λr +πr will not
be inserted in the goal set as they won’t be in the planning
window of the reactor.

3.5 An illustrative example
We have so far identified two ways in which the state in-

formation flows between reactors:

• Synchronization allows reactors to deduce their state
so as to reconcile their views.

• Goal dispatching allows a reactor to propose new ob-
jectives to reactors it depends on.

When a goal is posted to a reactor r there are no guar-
antees that it can be inserted and planned by r. It can be
rejected due to conflicts with its existing partial plan or its
execution can be interrupted by an unanticipated situation.
This can impact the plan of the reactor that initially posted
the goal. To answer the question of how the reactor ob-
serves an invalidation of a plan and measures the impact of
this failure, we return to the example from Section 2 with
the Pilot having to Communicate.

Ascend(2)

depth � 0.5

�t < 5
Command

Position

CommunicateStatus Surfacing

contains

Idle

contained_by

Idle Ascend(0.5)

depth=1

Figure 7: A partial plan produced by the Pilot after an

initial plan failure based on Fig. 3. Red areas before τ

indicate past observations grounded by synchronization.

As shown in Fig. 3, in this plan the Pilot has produced to-
kens which are attached to its external state variables owned
by the Vehicle reactor. The Pilot proposes that Vehicle ex-
ecute an Ascend(2) on the Command state variable, which
would task the vehicle to ascend gradually, first up to the
depth of 2m followed by an Idle and then to be able to
reach a depth below 0.5m with a maximum delay of 5 ticks
(such incremental ascends are done to disallow breaching).

This plan produces pending tokens which are dispatched
to the goal set of Vehicle. Ascend is correctly inserted and
its execution started by the Vehicle reactor. This state
change is then synchronized back with the Pilot which in
turn can identify that the state of the Status state variable
has changed to Surfacing as expected. At time t the Pilot
is notified about the termination of Ascend and the begin-
ning of Idle. The Pilot ’s partial plan requires the depth to
be less than 0.5m within the next 5 ticks.

Let us assume that an external condition has altered the
vehicle’s buoyancy. As a consequence the vehicle does not
rise as predicted by the model and the depth observed at tick
t + 5 is around 1m below the surface. At synchronization
time the Pilot identifies that this observation on the Posi-
tion state variable is conflicting with its initial partial plan.
However the Pilot needs to fulfill its objective to Communi-

cate. Synchronization breaks the current plan to trigger a
new deliberation phase to replan from an unexpected situa-
tion. The Pilot retracts the Idle and replans.

The Pilot can now safely replan knowing that the previ-
ously pending tokens are no longer part of the Vehicle’s goal
set. A potential recovery action is to try to Ascend again
but with a goal depth of 0.5m or less to ensure that the ve-
hicle will be at the surface at the end as shown in Fig. 7.
The agent should then be able to Communicate as planned.

Proposition 3.10. When synchronization invalidates the
current plan of a reactor it potentially invalidates all its
pending tokens on its external state variables. Consequently
the goals on the corresponding internal view should be re-
moved from this goal set.

4. EXPERIMENTAL RESULTS
Our framework, called the Teleo-Reactive EXecutive (T-

REX) has been demonstrated in two challenging problem set-
tings; a terrestrial hallway navigation domain requiring co-
ordination between different reactors dealing with manipula-
tion and control. And a marine robotic vehicle navigating,
detecting and adapting to dynamic features in a complex
coastal environment. Our implementations involved the use
of the EUROPA2 Constraint-based temporal planner [11, 5]
for deliberation. Desktop experiments primarily to validate
the notion of partitioning are presented in [14].
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4.1 Service Robotics Example
PR2 is a mobile manipu-

Figure 8: PR2 plugging in

to a standard outlet.

lation platform designed for
operation in dynamic and un-
structured indoor environments.
In June, 2009, a series of demon-
strations were conducted with
a PR2 requiring autonomous
navigation, door-opening, and
recharging using standard elec-
trical outlets [13]. Notably,
a critical demonstration re-
quired 10 recharge goals to
be accomplished consecutively
without any human interven-
tion, in under an hour. In
this and other demonstrations,
T-REX gracefully handled a wide range of failure conditions.

Table 1 provides a summary based on a single run with
9 recharge goals (based on the number of offices available
during experimentation). T-REX operated at 10 Hz with 7
reactors. This provides rapid transitions from one action to
another but requires synchronization of the complete agent
once every 100 ms. The overall scale of the system is indi-
cated by the number of internal and external timelines. The
total number of EUROPA2 timelines excludes these. The
mission ran for over an hour. 3 doors were locked when tried.
The agent deferred them till later. One of them was opened
when revisited. The remaining 2 were continually retried
until the test was terminated. In total, 494 external robot
actions were executed, of which 29 aborted or timed-out.
907 planning cycles occurred across all reactors that delib-
erate. A planning cycle is initiated when a reactor receives a
goal, or when a flaw is entailed by the model. T-REX memory
consumption was steady at 10 MB. The total line count for
the model provides a coarse metric of program complexity.
It includes all constraints and class declarations. The mod-
est number reflects the leverage from automated planning
and a very high level programming model. T-REX ran on a
dual-core 2.6GHz Linux machine. The mean and standard
deviations for CPU utilization are at 9.8% and 5.0% respec-
tively. This indicates that even at a control rate of 10 Hz,
T-REX was comfortably able to handle the load.

4.2 Marine Robotics Example
T-REX has also been integrated on-board an autonomous

underwater vehicle (AUV – shown in Fig. 9) and deployed
for scientific exploration in coastal waters off California [17].
The agent runs on a 367 MHz EPX-GX500 AMD Geode
stack using Linux, with the lower-level functional layer run-
ning on a separate processor on real-time QNX. Over the
course of 2008-9, our science objectives were to carry out

Measurement Value
Agent control rate (1/δtick) 10 Hz
Total number of internal timelines 47
Total number of external timelines 66
Total number of EUROPA2 timelines 87
Mission duration (H) 3799 seconds
Estimated model line count 1207
T-REX CPU utilization (mean ± std) 9.8% ± 5.0%

Table 1: Summary metrics for a service robot.

Figure 9: An MBARI AUV at sea with its support ship

the R/V Zephyr.

survey missions within a prescribed area in excess of 50 Sq.
km while estimating the presence of a dynamic coastal fea-
ture1.

Details of one such mission are shown in Table 2, with
T-REX running at 1Hz. The AUV exhibited both long term
planning as well as reactive behavior in response to envi-
ronmental changes impacting the full scope of the mission.
During the uninterrupted 6 hour and 40 minutes run, T-

REX was able to to bring back targeted water samples from
within biological hot-spots [16, 15]. The deployed agent
had a 5-reactor hierarchical configuration with two reactors
being interfaced to the vehicle control system and a satel-
lite modem. The number of actions, recoveries and failures
are highly dependant on exogenous parameters such as sub-
surface currents, survey location or data collected during the
surveys. We sent in excess of 100 commands to the vehicle’s
functional layer.
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Figure 10: Visualization of a survey mission to detect

and characterize a dynamic ocean feature. High proba-

bility of feature presence is indicated in red. S1-S5 indi-

cate triggering of 10 water samplers.

Fig. 10 shows the AUVs transect and the context of the
feature in the water-column detected by its sensors. It also
shows the vehicle changing its sampling resolution, starting

1Fluid sheets of suspended particulate matter that originate
from the sea floor.

Measurement Value
Agent control rate (1/δtick) 1 Hz
Total number of internal timelines 21
Total number of external timelines 23
Total number of EUROPA2 timelines 56
Mission duration (H) 6:40 hours
Estimated model line count 2620
T-REX CPU utilization (mean ± std) 14% ± 8.0%

Table 2: Summary metrics for a deployed marine robot.
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with high and ending with low resolution transects where
the feature is not visible. Water samples are shown to be
taken within the feature as required. Scientific results from
these missions in coastal larval ecology can be found in [20].

5. CONCLUSIONS AND FUTURE WORK
We define a novel formal framework which provides a ba-

sis for partitioning a complex control problem into multiple
SPA control loops within an agent for seamless interaction.
They do so by deliberating over their own state variables
and allowing other control loops to observe and suggest goal
sets for reconciliation. The strong semantics placed on state
variable ownership and observation, allows the agent to sys-
tematically arbitrate to generate a consensus behavior via
reactor deliberation.

One primary shortcoming with the framework, has to do
with the inter-dependence between modeling of state vari-
ables and reactor design. State-Variables owned within a
reactor encapsulate local interactions. When more than one
user of a timeline attempts to post goals at the same time, it
is problematic if there are interactions between these goals
that are not captured in the owner reactor. Additionally,
when timelines have co-temporal interactions, they should
be reasoned about together in a single reactor. These con-
siderations have not proven problematic in our experience.
However, reactor design is still heuristically driven; tech-
niques developed for partitioning constraint graphs such as
[21] for example, may be relevant in this context.

Future areas of research are to understand the scalabil-
ity of this approach by extending the agent’s model deeper
towards the hardware for diagnosis and recovery, to study
how to extend our framework to multi-agent environments
with sporadic communication capabilities in harsh environ-
ments and to study the capability to seamlessly insert and
remove reactors within an agent, The latter as a way to
deploy new capabilities as also to demonstrate fail-safe be-
havior in mission-critical settings.
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